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EDMI Microsystems and Microelectronics

MICRO-614: Electrochemical Nano-Bio-Sensing
and Bio/CMOS interfaces

Lecture #14
CMOS for Sensing (and
computing!) with Memristors

(c) S.Carrara



Memristive Sensors Milestones
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Memristive Sensors Milestones
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Why the Voltage Gap appears in
Memristive Biosensors?

Doped Undoped
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N >
Biomolecules affect the w-state of the device



Memristive Model
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The Non-pinched Hysteresis 1s initially modelled
by the capacitance of the two Schottky Barriers

(c) S.Carrara



Memristive Model

|. Tzouvadaki, al et S. Carrara, IEEE Sensors Journal 15(2014) 6208-6217

Antigen concentration [fM] Voltage gap [Volts] Capacitanc Voltage gap [Volts]

Simulation values

5 0.56 24 0.563

Experimental values [9]
0 0.84 ¢ 04 0.844 i

10 0.37 15 0.362

Typical values of the excess capacitance reported in literature are
around 43nF. It is the combination of the space charge capacitance
characterizing the diode and of the diffusion capacitances due to the

carriers injection J. Werner, et al., Phys. Rev. Lett., 1988, 60, 53-56

While typical capacitance values concerning only contributions by the

depletion area are in the range of pF
M. Bleicher & E. Lange, Solid State Electron., 1973, 16, 375-380

(c) S.Carrara 6



Memristive Sensors Milestones
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|. Tzouvadaki et al. / Nano Lett. 16(2016) 4472-4476 P
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Very first worldwide ever-reported electrochemical biosensor
based on a memristive effect and DNA aptamers

S. Carrara (c) 7



Memristive Sensors Milestones

|. Tzouvadaki et al. / Nanoscale 9(2017) 9676

trasensitive label-1ree Aptamer-based memristor to
monitor therapeutic compounds

S. Carrara (c) 8



Memristive Sensors Milestones
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Memristive Sensors Milestones

|. Tzouvadaki et al. / Nano Lett. 16(2016) 4472-4476
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Memristive Sensors Milestones

|. Tzouvadaki et al. / Nano Lett. 16(2016) 4472-4476

electrode surface LOD reference
gold electrodes 37 nM Formisano et al."*
(2015)
GCE pM range Souada et al."* (2015)
gold electrodes 30 pM Jolly et al.'® (2015)

glassy carbon electrode 7.6 pM Liu et al'” (2012)
(GCE)
GCE 0.15pM  Kavosi et al.'® (2015)

Voltage Gap [V]

gold electrodes Yang et al.”” (2015)
gold electrodes Jolly et al.*” (2016)
GCE Kavosi et al.'® (2015)
Si-nanowires present work
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Best Ever Biosensors for Cancer Markers by Aptamers
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Multi-Panel on Chip
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|. Tzouvadaki et al. / IEEE Sensors Journal 14(2019) 5769-5774

Memristive Multipanel Platform for Theragnostics with Microfluidics

(c) S.Carrara 12



CMOS interface to Memristive Sensors

Exitation >

Nanosensors socket cimmon Source
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(¢) S.Carrara
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Sensor frontend on PCB

Power supply

(c) S.Carrara 14



Sensor frontend for Respberry Pi

TDM core:
Raspberry Pi 1

(c) S.Carrara 15



CMOS design for V.

Vbias_n
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Ali Zaher, al. et S.Carrara, IEEE BioCAS 2014
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COSM circuit for automatic acquisition of the Voap

(c) S.Carrara
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CMOS design for V,,,

Ali Zaher, al. et S.Carrara, IEEE BioCAS 2014

COSM circuit for automatic acquisition of the Voap

(c) S.Carrara 17



Android Application
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|. Tzouvadaki et al. / IEEE Sensors Journal 14(2019) 5769-5774

Multipanel Platform with Wireless Communication to Android

(c) S.Carrara 18



Memristive Biosensors holder PCB:
the disposable sensing modules

__Memristive NW-arrays

Schottky Barrier regions

PCB connectors

- Pt extension electrodes

(c) S.Carrara 19



Bio/CMOS interface:
iIssues on connections
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Vin <> c c




Bio/CMOS interface: the connections

|. Tzouvadaki & A.Vallero, al et S. Carrara, IEEE ISCAS 2016

Initial Circuit
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(c) S.Carrara 21



the problem of connections

Bio/CMOS interface:
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(c) S.Carrara
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Bio/CMOS interface:
Proper design of connections
a. b.
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Memristive Sensors Milestones

S. Carrara (c) 24



Automated Spotting for Multiplexing

Micro-array Spottering

Initial Chip with
bare nanowires

(c) S.Carrara 25



Multiplexing for Specific Cancer Markers

A: Granzyme B: Ifn-y C: Gelatine

(c) S.Carrara 26



Non-Activated versus Activated CD8 T Cells

—> Detection!

(c) S.Carrara 27



Non-Activated versus Activated CD8 T Cells

PajeAndy

IFN-y (APC)

GRA (PE) A. Tuoheti et al. / British Journal of Cancer Research 3(2020) 341 — 348

(c) S.Carrara 28



Brest Cancer Patients Stratification
with Memristive Biosensors

Immune
Attack

A. Tuonheti et al. / British Journal of Cancer Research 3(2020) 341 — 348

(c) S.Carrara 29



Differentiating kind of Tumour
with Memristive Biosensors
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A. Tuonheti et al. / British Journal of Cancer Research 3(2020) 341 — 348




Key Messages:

* Measurements with Memristive Biosensors
are much away more powerful than with
conventional devices.

* To diagnose correctly Cancer, we definitely
need measure multiple cancer markers.

* To correctly stratify Cancer Patients, we
definitely need to compute probability
indexes on a set of multiple cancer
biomarkers.

(c) S.Carrara
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In-Memory Computing Device

— Top
electrode

Conductive
filament

— Bottom
electrode

— Dielectric layer

b CurArent

T Set
transition

)
Vet Voltage

LRS

Reset
transition

D. lelmini and H.-S.P. Wong, Nature Electronics 1(2018) 333-343

Computational RRAM memory devices

(c) S.Carrara 32




In-Memory Computing

b d f h
A
W g Y X2 X X [Y=Xy X, X |v=x'=x;
0 0 1 19 0 0 1 0 0 0
0 1 1 0 1 1 0 1 1
1 0 0 1 0 0 1 0 1
1 1 1 1 1 1 1 1 1
e @
0 1 X

D. Ielrﬁini and H.-S.P. Wong, Nature Electronics 1(2018) 333-343
In-Memory Computing with RRAM-based
digital logic gates

(c) S.Carrara 33



Artificial Intelligence
by Deep Learning

input layer hidden layer 1 hidden layer 2 output layer

Neural networks are multi-layer networks of neurons that
Compute by classify things, make predictions, etc.

(c) S.Carrara



Key device for Deep Learning

(1)

Deep learning 1s based on « neurons » (artificial),
which typically “learn” on mputs by an Activation
Function that changes their “transmitting state”

(c) S.Carrara 35



Artificial Intelligence in Hardware

| J Fingas / www.engadget.com on Sept, 26° , 2021

Image credit

VICTOR HABBICK VISIONS/SCIENCE PHOTO LIBRARY via Getty Images

Neuromorphic chips need for roughly 100 billion neurons

(c) S.Carrara 36


http://www.engadget.com

Complexity of Computing Chips

CAPACITANCE VALUES AND SIZES USED IN THE DESIGN

Current Comparator Spike generation

Cmem Cahp Cref Chex Positive Feedback

Value  1pF  2pF  700fF 600fF
Width  20pum 28um 16um  15um 5 F—‘—ips
 —

Length 20pm 30pm 19pm 17 pum

b

Viim IE“:

leak N16
NZ Wy = N12 N15 N17
vee i
Input DPI Filter = _"N,, £ N1

h l -
@zznm FDSO' EI Refractory Period

A. Rubino, et al., , IEEE ICECS, 2019, 458-461

How many transistors do we need for
realizing a single CMOS neuron?

(c) S.Carrara 37



Su erS|ze Al on Whole Wafer!

l\‘l\@u
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Can Engiracing Curd Tvr
Owrate Orange?

The 2.6
Trillion
Transistor
Chip

WSE 2 WSE
Size 46,225 mm? 46,225 mm?
Transistors 2.6 trillion 1.2 trillion
Cores 850,000 400,000
On-chip memory 40 gigabytes 18 GB
Memory bandwidth 20 petabytes/s 9 PB/s
Fabric bandwidth 220 petabits/s 100 Pb/s
Fabrication process 7 nm 16 nm

Nvidia A100

826 mm?

54.2 billion

7,344

40 megabytes

155 GB/s

600 gigabytes/s

7 nm

IEEE Spectrum, issue on July, 2021

Cerebras’s wafer-size chip boasts 2.6 trillion transistors

(c) S.Carrara
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Costs of Computing Chips

= MIT Technology Review Signin

COMPUTING

A $2 Billion Chip to Accelerate Artificial Intelligence.

A new chip design from Nvidia will allow machine-learning researchers tomarshallarger
collections of simulated neurons.

By Tom Simonite
April 5,2016

Billion neurons may cost Billion $

(c) S.Carrara 39



Blologlcal Computation

B1010g1ca1 neuron (natural) are « single devices » Wthh
change Activation Function « by leaning », so from their
past, which means coding the past in a different state!

(c) S.Carrara 40



In-Memory Computing

So, If we succeed 1n getting a device
that works like natural neurons we may
develop machines computing like
human brain !

(c) S.Carrara 41



Memristive Sensors Milestones
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T. Serrano-Gotarredona, et al. / IEEE CAS Mag. 13 (2013) 74-88

S. Carrara (c) 42



Memristive Sensors Milestones

T Convolutions:
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Event-driven sensing"e‘md classification by
CMOS/memristors integrated in an artificial retina

T. Serrano-Gotarredona, et al. / IEEE CAS Mag. 13 (2013) 74-88

S. Carrara (c) 43



Biological Sensing

. Cell body
Dendrites Axon

Human nervous system contains several kind
of neurons, including sensory neurons

(c) S.Carrara
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In-Memory Sensing

So, If we succeed 1n getting a device
that works like natural neurons we may
develop machines computing like
human brain and...

...like human peripheral nervous
sensing system,
we may also develop machines to

SENSE & COM

PUTING !!!

(c) S.Carrara
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In-Memory Computing

b d f h
A
W T Y X2 X, X |v=x; X, X |v=x'=x;
0 0 1 1¢ 0 0 1 0 0 0
0 1 1 0 1 1 0 1 1
1 0 0 1 0 0 1 0 1
1 1 1 1 1 1 1 1 1
e @
0 1 X

D. Ielrﬁini and H.-S.P. Wong, Nature Electronics 1(2018) 333-343
In-Memory Computing with RRAM-based
digital logic gates

(c) S.Carrara 46




In-Memory Sensing & Computing

PSA PSMA
Cancer
Markers ‘ ‘

X, X, |v=x;

0 0 1 No Cancer
PSA Chemical 0 1 1 NoCancer | computing
to Sense 1 0 0 Cancer output
1

S.Carrara, et al., SNF Grant, 2021

In-Memory Sensing with RRAM-based
sensing digital logic gates

(c) S.Carrara 47



Back to Several Architectures

D. lelmini and H.-S.P. Wong, Nature Electronics 1(2018) 333-343

In-Memory Computing with RRAM-based
digital logic gates

(c) S.Carrara 48



Novel Approach in Edge Computing
In-Memory Sensing of Cancer Markers

S 4 rsva
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D. Heim, et al., IEEE ISCAS 2022

Two sensors 1nteract with each other to perform a
logical operation already at the sensor node

(c) S.Carrara
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Novel Approach in Edge Computing
In-Memory Sensing of Cancer Markers
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D. Heim, et al., IEEE ISCAS 2022

Block diagram of the entire circuit. A Finite State
Machine (FSM) 1s used to control switches for
writing and reading the biosensors states

(c) S.Carrara 50



Novel Approach in Edge Computing
In-Memory Sensing of Cancer Markers

SWEEP FINISHED

D. Heim, et al., IEEE ISCAS 2022

Finite state machine diagram for writing and
reading the biosensors states

(c) S.Carrara 51



Novel Approach in Edge Computing
In-Memory Sensing of Cancer Markers

FSM State: 000 Py 010 011 100
1- ~ : |
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D. Heim, et al., IEEE ISCAS 2022

Finite state machine states and main system signals

(c) S.Carrara 52



Novel Approach in Edge Computing
In-Memory Sensing of Cancer Markers
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D. Heim, et al., IEEE ISCAS 2022

Finite state machine states and main system signals
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Novel Approach in Edge Computing
In-Memory Sensing of Cancer Markers
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D. Heim, et al., IEEE ISCAS 2022

Finite state machine states and main system signals
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Novel Approach in Edge Computing
In-Memory Sensing of Cancer Markers

FSM State: 000 001 010 011 100
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D. Heim, et al., IEEE ISCAS 2022

Finite state machine states and main system signals
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Novel Approach in Edge Computing
In-Memory Sensing of Cancer Markers

RISK of Cancer
0.2-
Tl e —
— 0.0
=
= Pulses
8 —0.29 | to readout r
= — [PSA] =10 fM, [PSMA] = 10 fM _
—0.4- —— [PSA]= 0 fM, [PSMA] = 10 fM No risk
—— [PSA] =10 fM, [PSMA] = 0fM RISK of Cancer
-0 .6 — [PSA]= 0fM, [PSMA]= 0fM | No risk

090 092 094 096
Time (ms) D. Heim, et al., IEEE ISCAS 2022

(c) S.Carrara 56



Novel Approach in Edge Computing

In-Memory Sensing of Cancer Markers
PSMA

oftMm 3fM 7fM 10fM 12{fM

0fMq 0.86 | 0.79 | 0.70

3 fM- 0.88 | 0.78
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7 fM 0.90 | O.
(ORiVE 1.20 | 0.89 | 0.70
(PRIVE 136 130 1.22

Output Voltages directly as “Risk Probability for
Cancer” for different concentrations of PSA/PSMA
(c) S.Carrara 57
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D. Heim, et al., IEEE ISCAS 2022




Summary

That’s possible to realize artificial neurons with single
devices: the Memristors!

The development of Memristive devices for Sensing aims
gave rise to the new field of Memristive Sensors.

The coupling of Memristive Sensors with biomolecules
gave rise to the new field of Memristive Biosensors.
Coupling the capability of computational architecture
based on memristors and memristive sensors we can
realize new “in-Memory Sensing & Computing”
machines.

Case study: simultaneous computation of multi-
biomarkers is really key to succeed in Cancer Diagnostics!

(c) S.Carrara 58



